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Abstract
The set of planets in the solar system consists of the nine objects Pluto up
to and including Jupiter, in increasing order of planet size and mass. We have
stimulating numerical evidence that this set can be approximated by a two-scale
Cantor multi-fractal with l1 ≈ 0.40 and p1 ≈ 0.15.

PACS numbers: 9510C, 0260, 0545D

1. Introduction

We consider the planets of the solar system as the fractal outcome of a particular aggregation
process of particles. This process is certainly different from the diffusion limited aggregation
(DLA) model [1–5], because the objects are rotating and the internal compactification of the
objects is not accounted for, among other things. It is also different from the cluster–cluster
model [6] owing to almost the same arguments. We do not propose a theory to describe this
specific aggregation process but only furnish some numerical evidence.

Assuming that the distribution of the planet sizes Rc and masses Mc is a two-scale Cantor
measure, we develop some theory in section 2 to support the calculation of the scaling values
l1, p1. In section 3 we show the results, while comments and conclusions are given in section 4.

2. Basic properties of the two-scale multi-fractal

Let l1 � l2 be the length rescaling parameters and p1 � p2 the measures of a two-scale Cantor
multi-fractal (MF hereafter) [7–13] with generator

p
q

1 lτ1 + p
q

2 lτ2 = 1 (1)

so that the partition function on level n is

	n(q) = (p
q

1 lτ1 + p
q

2 lν2 )n =
2n−1∑
i=0

µ
q

i δ
τ
i = 1 (2)

where δi = ln−k
1 lk2 , µi = pn−k

1 pk
2 are the size (respectively, mass) of the ith bin in [0, 1] and k

is the number of 1’s in the binary expansion of i, i = ∑n
v=1 av2n−v ∈ [0, 2n − 1] with av = 0

or 1. We have used a value of n = 10, 2n = 1024, throughout this paper.
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Figure 1. The graph of the measure Rc of equation (3b). The broken lines mark the positions of
the planets on the curve, i.e. the coarse subdivision xk = ik/2n. The full curve is y(x) = xg , where
g = − ln(l1)/ ln(2).

Furthermore, let D0 = 1 be the dimension of the segment [0, 1], then if q = 0 in
equation (1) we have

l
D0
1 + l

D0
2 = l1 + l2 = 1 if q = 1 then p1 + p2 = 1.

The expression of the (cumulative) mass distribution from i = 0 up to i = ij is

Mcj =
ij −1∑
i=0

µi =
ij −1∑
i=0

pn−k
1 pk

2 (3a)

and the value at the end is Mc(ij = 2n) = 1. Similarly, the distribution Rcj of the lengths of
the radii is determined by

Rcj =
ij −1∑
i=0

δi =
ij −1∑
i=0

ln−k
1 lk2 with Rc(ij = 2n) = 1. (3b)

The graph of this measure Rc on level n is shown in figure 1.
After a little algebra we find that, if ij = 2n−j , j = 0, 1, . . . , n, then Rcj = l

j

1 and
Mcj = p

j

1 .

2.1. A coarse subdivision of [0, 1]

Now, suppose the segment [0, 1] is also coarsely subdivided into a set of Np elements according
to the set

I = {ik|k = 1, . . . , Np � n, i0 = 0 < i1 < · · · < iNp = 2n}.
The partition function (2) then becomes

	n(q) =
Np∑
k=1
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i=i(k−1)

µ
q

i δ
τ
i

)
=
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m
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τ
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and produces only the same τ provided that m
q

kr
τ
k equals the sum

∑i(k)−1
i=i(k−1) µ

q

i δ
τ
i for every

k = 1, . . . , Np, and q ∈ R.
If q = 0 then

rk = Rck − Rck−1 =
i(k)−1∑

i=i(k−1)

δi (5a)

is the size of object k and if q = 1 then we find

mk = Mck − Mck−1 =
i(k)−1∑

i=i(k−1)

µi (5b)

as the mass of object k.
When the values of l1 and p1 are known, then we can solve equation (1) in τ and find

the exact value τ0. However, solving equation (2) or (4) in τ , given {δk, µk} or {rk, mk}, leads
normally to an approximation τ = τ1 of τ0.

If the coarse subdivision is exactly equal to ik = 2n−Np+k then we obtain Rck = l
Np−k

1 ,
hence rk = l2l

Np−k

1 , and Mck = p
Np−k

1 , from which mk = p2p
Np−k

1 . The rk is a power law with
respect to the index k in l1 and so is mk in p1. We call this type of subdivision the pure-fractal
format. It is obvious that every binomial MF generated by equation (1) has a pure-fractal
format; what is not trivial is that the rk and mk are power laws with respect to the index k.

2.2. An exponential linear coarse subdivision

When the crude subdivision is more stochastic in nature but still exponential linear, that is
ik = 2k01+βk , where k01 and β are constants, then a fairly good approximation to the distribution
is

Rck
∼= l

n−k01−βk

1 = Rc0a
k hence rk ≈ (a − 1)Rck (6a)

and

Mck
∼= p

n−k01−βk

1 = Mc0b
k and mk ≈ (b − 1)Mck. (6b)

Knowing the coarse partition gives us the possibility to acquire the value of l1 from the value
of either Rc1 or a, and of p1 from either Mc1 or b.

2.3. α and f (α)

The function τ is defined as τ = (1 − q)Dq so that

αq = −∂τ

∂q

and f (α) = αqq + τ . The real alpha is αk = log(mk)/ log(rk), where the index k is a dummy
index of the coarse partition and is not directly related to a power k.

An approximation to this value can be derived by differentiating the equation∑Np

k=1 m
q

kr
τ
k = 1 with respect to q, which leads to

αq,Np =
Np∑
k=1

tk log(mk)/

Np∑
k=1

tk log(rk) where tk = m
q

kr
τ
k .

Note that, if Np → ∞ then the values of τ1 and αq,Np become exact. This is shown in figure 2,
where the (α, f (α)) graph is plotted for the values Np = 5, 9 and Np = ∞.
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Figure 2. The function f (α) of section 2.3 for different values of Np with l1 = 0.40, p1 = 0.155.

3. Numerical results

Considering the planets as a more or less exact representation of a binomial MF we can make
use of the following methods to estimate the values of l1, p1, while D0 = 1.

Method 1. The simplest method is to use equations (3a) and (3b) and to compute Rcj , Mcj

by varying l1, p1. The criterion of least squares

σ 2 =
Np∑
j=1

(Rreal j − Rcj )
2 + (Mreal j − Mcj )

2

where we denote by Rreal j the real values in table 1 and by Rcj the computed values (3b), is
then suitable to calculate the set {ij }.

The values of l1, p1 belonging to the minimum of σ 2 are l1 = 0.398 and p1 = 0.154; the
best fit {ij } is shown in table 1.

These values are rather stable; transforming the set once by similarity, Mc(l1Rc(x)) =
p1Mc(Rc(x)), or once by affinity, Mc(l1 + l2Rc(x)) = p1 +p2Mc(Rc(x)), gives the same values
up to a difference of less than 0.01.

Method 2. As appears from equation (4) we can generate a set SNp = {(q, τ (q))} from the
set of measurements {(rk, mk)} by the Newton–Raphson technique [15]. Given the SNp we
can compute the values of l1, p1 by a variety of possibilities. An easy way is to calculate them
from the equations l1 + l2 = 1 and p1 + p2 = l

α2
1 + l

α1
2 = 1.

Taking αmax = log(mmars)/ log(rmars) = 2.043 and αmin = 0.328, related to the planet
Jupiter, we find l1 = 0.403 and p1 = 0.156.

Method 3. The values of l1 and p1 can be reconstructed from a simple log–linear regression
of the values of {(Rcj , Mcj )} versus the index k if the coarse partition of section 2.2 is known.
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Table 1. Columns 2 and 4 give the normalized cumulative planet radius and mass Rc and
Mc (see equations (5)) taken from [14]. In column 3 the percentage deviation (1 − computed
Rc/real Rc) × 100 is shown, and the computed Rc is calculated by equation (3a) with l1 =
0.40, p1 = 0.155. This is also done in column 5 for the mass. Column 6 shows the associated
coarse partition explained in section 2.1. α in column 7 is the real αk of section 2.3.

Cumulative Dev. Cumulative Dev.
Planet size Rc Rc (%) mass Mc Mc (%) Ij α

Pluto 5.591 × 10−3 17.9 5.733 × 10−5 −56.6 24 1.88
Mercury 1.773 × 10−2 6.2 1.810 × 10−4 1.8 54 2.04
Mars 3.466 × 10−2 −20.6 4.216 × 10−4 36.0 71 2.04
Venus 6.480 × 10−2 −5.5 2.246 × 10−3 12.1 126 1.80
Earth 9.657 × 10−2 −3.9 4.484 × 10−3 8.6 183 1.77
Neptune 2.176 × 10−1 0.8 4.283 × 10−2 −31.3 352 1.54
Uranus 3.440 × 10−1 0.6 7.537 × 10−2 −0.3 480 1.66
Saturn 6.445 × 10−1 0.4 2.884 × 10−1 −1.2 784 1.29
Jupiter 1 — 1 — 1023 0.33

For the coarse partition {ij } of table 1 we have k01 = 4.175, β = 0.672, with a linear
correlation coefficient σ = 0.996, so that from Rc0 = l

n−k01
1 = 4.47 × 10−3 we compute

l1 = 0.394 and from a = l
−β

1 = 1.863 we compute l1 = 0.395.
In the same way we obtain from Mck = Mc0b

k with σ = 0.996 and Mc0 = 1.41 × 10−5

the value p1 = 0.146 and from b = 0.289 the value p1 = 0.157.
Unfortunately we are not able to estimate the standard errors in methods 1 and 2, so no

comparison of the values is possible.

4. Comments and conclusions

We have demonstrated numerically that the (local) mass and size distribution of the large
objects around the Sun can be described approximately by a binomial multi-fractal.

We now make the following observations.

(a) It is difficult to prove that the solar system planets are part of a fractal on the basis of a
sample of only nine values (rk, mk). The theory of section 2 is applicable, but we still
need a consistent model. Furthermore, the fractality is also difficult to prove because the
values (rk, mk) are not exact. Some error sources are:

1. The planets have been subjected to gravitational forces, resonances, etc over millions
of years. Therefore, the (rk, mk) will not be accurate enough to match a fractal.

2. From section 2.3 Np < ∞. It is of no use to improve the accuracy of the l1, p1 due
to the fact that the finite Np = 9 is a large error source (see figure 2).

3. The cut-off values of (rk, mk) which define αmin and αmax. To give a rather naive
illustration, if we add the values of rsun = 109.1Rearth and msun = 3.329 × 105Mearth

to the set of planetary data then we obtain αmin = 0.005 and αmax = 3.024.
Consequently, the values of l1, p1 change, if we maintain the two-scale MF approach.
Another star and thus other planets would also yield other values of l1, p1.

(b) The values we adopt are: l1
∼= 0.40, p1

∼= 0.155 for a reasonable fit with regard to
the real values and α-limits (see figure 3). There is a better fit to the SNp of section 3,
method 2, through l1 ≈ 0.43, p1 ≈ 0.17, but then the approximation to the real values
of table 1 is worse. From the set SNp we obtain the values: α(q = 0) = 1.303 and
f (q = 0) = D0 = 1; α(q = 1) = 0.724 = f (q = 1) = D1; α(q = 2) = 0.446
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Figure 3. The f (α) of the planets and the fit with l1 = 0.40, p1 = 0.155.

and f (q = 2) = D2 = 0.333; for q = 0.488 the value of α is 1 and f (α = 1) is
approximately 0.926.

(c) Normally, we would interpret the αmin, αmax as belonging to the most compact (respectively
most rarefied regions of the fractal). Since the planet mass originates from attraction
of particles, it is more convincing to relate the αmin = α(Jupiter) to the maximal and
αmax = α(Mars) to the minimal growth probability. Translated into DLA language, the
gravitation around a point is considered to be related to the local growth probability, in
this particular fractal aggregation process.

(d) Normalizing the radii of the orbits of the planets and applying logarithmic linear regression,
we obtain the value: Rorbit,k = R0a

k = 1.766 × 10−3(1.866)k with a linear correlation
coefficient σ = 0.991. When we compare this to the cumulative Rc of the planets as such
(equations (6a) and (6b)), that is to Rck = Rc0a

k = 4.475×10−3(1.863)k, σ = 0.994, we
notice that only the prefactors are different. This suggests that the fractal spatial support
(the solar environment) and the results of aggregation (the planets) have a common factor.

At this moment we are still studying this problem (see also [16, 17] for instance).

(e) The procedure of moon formation around a planet is almost similar to that of the planets
around the Sun. Also, both processes have as a result a two-dimensional plane with a
three-dimensional spherical central mass.

The consequence is a similar f (α), but the numerical approximations of Rc, Mc by
equations (3a) and (3b) or rk, mk by (5a) and (5b) are worse than in the case of the
planets.

(f) We conjecture that:

1. The solar system as such is a subset of a multi-fractal, which can be approximated by
a two-scale Cantor MF.

2. The interior of the planets is possibly fractal-like with a deviating thermodynamics.
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